
Snap-Together Visualization:
A User Interface for Coordinating Visualizations via

Relational Schemata

Chris North and Ben Shneiderman
Human-Computer Interaction Lab &

Department of Computer Science
University of Maryland, College Park, MD 20742 USA

north@cs.umd.edu, ben@cs.umd.edu
http://www.cs.umd.edu/hcil

ABSTRACT
Multiple coordinated visualizations enable users to rapidly
explore complex information. However, users often need
unforeseen combinations of coordinated visualizations that
are appropriate for their data. Snap-Together Visualization
enables data users to rapidly and dynamically mix and
match visualizations and coordinations to construct custom
exploration interfaces without programming. Snap’s
conceptual model is based on the relational database model.
Users load relations into visualizations then coordinate
them based on the relational joins between them. Users can
create different types of coordinations such as: brushing,
drill down, overview and detail view, and synchronized
scrolling. Visualization developers can make their
independent visualizations snap-able with a simple API.

Evaluation of Snap revealed benefits, cognitive issues, and
usability concerns. Data savvy users were very capable and
thrilled to rapidly construct powerful coordinated
visualizations. A snapped overview and detail-view
coordination improved user performance by 30-80%,
depending on task.

Keywords
User interface, information visualization, multiple views,
coordination, tight coupling, relational database, user study.

INTRODUCTION
In exploring information, two or more coordinated
visualizations are often required to adequately display and
browse the data. For example, Microsoft’s Windows
Explorer employs 3 visualizations to browse hierarchical
file systems: an outliner view of the folders, a tabular view
of the files in the selected folder, and a web view of the
details of the selected file including a miniature quick-view.
In Spotfire [AW95], a commercial scatterplot visualization
tool, selecting a record in the plot displays its attribute

values in a web browser.

While these combinations of coordinated views are very
helpful for some tasks, what about other combinations?
What if, in Windows Explorer, users want to view their
folders as a scatterplot instead of an outliner? Then they
could quickly spot large old folders, and select them to see
contents in the tabular view. If browsing a census database,
why can’t users click on a state in a Spotfire visualization to
display its counties in a Treemap [Shn92] visualization?
(See Figures 1)

These alternate combinations typically require custom
development. In our lab, researchers stumble over this
problem often, and must constantly re-implement
coordinations between new unforeseen combinations of
views. Unfortunately, this is a poor solution to the
problem. Even with good component-based design, these
hard-coded combinations are inflexible and difficult to
construct.

A lightweight mechanism is needed to allow end-users to
easily “snap” individual visualizations together into custom
combinations. These combinations can exploit simple
relationships in the data to support browsing. This must not
be a toolkit that requires programming, but a user interface.

Specifically, users should be able to choose and coordinate
visualizations so that: selecting or navigating to a data item
in one view causes another view to select or navigate to
corresponding items or load and display data related to that
item. The “load” capability is particularly potent. For
example, users can drill down through multiple hierarchical
levels in a database using different visualizations for each
level, as in the states and counties example above.

Related Work
Systems for information visualization via multiple
coordinated views can be classified by their level of
flexibility in data, views, and coordinations:
• Data: users can load their own different data sets into

the visualizations.
• Views: users can choose different sets of visualizations

as appropriate for the data.

• Coordinations: users can choose different types of
coordinations between pairs of views as needed for
exploring or navigating relationships in the data.

Level 0 systems are not intended for flexibility. For
example, Windows Explorer always displays the same data
set (the hard drive file structure), with the same views and
coordinations.

Most visualization tools are level 1, flexible for data but not
views or coordinations. For example, the Treemap tool can
load and display any hierarchical data set of users’
choosing, but remains constant in its pair of views (the
treemap view and the details pane) and the coordination
between them (selecting a node in the treemap displays
associated data in the details pane).

Level 2 systems include flexibility in choice of views. For
example, systems such as Datadesk [Vel88], SAS JMP,
EDV/Advizor [EW95], and Spotfire, can display a single
data table in many different types of views of users’
choosing such as scatter plots or bar charts. All the views

are coordinated for brushing-and-linking [BC87], allowing
users to relate data points across views. When users paint
points in one view, the system automatically paints the
corresponding points in the other views in the same manner.
This approach is useful for statistical data analysis.

In databases, Visage [RLS96] extends the brushing
coordination to multiple tables by brushing across relational
joins. However, users cannot establish a different type of
coordination between two views with these systems.

Level 3 systems include flexibility in the coordinations
between views. The Apple Dylan programming
environment [DP95] lets users choose which pairs of views
to coordinate. Users browse hierarchical object-oriented
programs by splitting and linking frames so that selecting a
folder in one frame displays its contents in the other frame
(e.g. generalized Windows Explorer). Spreadsheet
Visualization [CBR97] arranges many small 3D views as
cells in a 2D grid. Then, users can select a whole row or
column of views to synchronize their 3D navigation.

Figure 1: A coordinated visualization environment for exploring Census data of U.S. states and counties, dynamically
constructed using Snap-Together Visualization. Users can explore states from nominal, geographic, and numeric perspectives
using the outliner, map, and scatter plot. Selecting a state displays detailed county and industry information for that state in
the table and Treemap on the right. Selecting Maryland on the map reveals a fairly high ranking in Per Capita Income in the
plot, and immediately reveals in the Treemap that the Services industry in Montgomery County is responsible for a major
portion of that income.

Counties

States

Devise [LRB97] allows users to select some different types
of coordinations between views. Users can synchronize
panning and zooming of plots with common axes, and
establish set operations between views so that data in one
view can be combined with data in another.

In scientific visualization, data-flow systems such as
ConMan [Hae88], AVS, and IBM Data Explorer, also
employ a form of dynamic linking, but for a different
purpose. Users link a variety of modules to create custom
data processing and viewing pipelines, much like pipes on
the Unix command line. Linkwinds [JBO94] extends the
data-flow model for data filtering. Upstream widgets can
filter the data that is displayed downstream.

Multiple coordinated visualization approaches have become
an important and diverse topic. For a comprehensive
review of many systems, see [Nor00].

SNAP TOGETHER VISUALIZATION
Snap-Together Visualization enables data users to rapidly
and dynamically mix and match visualizations and
coordinations to construct custom exploration interfaces
without programming. Snap is flexible in data, views and
coordinations. Snap focuses on (a) interconnecting the
visualization tools created by researchers and developers in
the field to (b) construct coordinated browsers for rapid
exploration and navigation of data and relationships.

Model
Snap’s conceptual model is based on the relational database
model. To explore a database, users can construct
interfaces composed of coordinated visualizations based on
the database schema. Users load relations into
visualizations then coordinate the visualizations based on
the join relationships between their relations. There is a
direct correspondence between relational concepts and
Snap concepts: (see also Figure 2)

Relational Concept Snap Concept
Relation = Visualization
Tuple = Item in a visualization
Primary key = Item ID
Join = Coordination

Hence, a graph of coordinations between visualizations
corresponds to the graph of joins between the relations in
the database schema diagram. This was inspired in part by
RMM [ISB95], a system for constructing web site
navigational structure from underlying relational databases.
In RMM, database relationships correspond to hyperlinks,
whereas, in Snap they correspond to coordinations.

Relations into Visualizations
When using Snap, users first load relations into
visualizations. In Snap, a visualization displays a single
relation. Generally, each tuple is depicted as an individual
item in the visualization. For example, a scatter plot
displays each tuple as a dot using 2 of its attributes as the
coordinates. A table displays each tuple as a row.

Visualizations typically allow users to select a tuple,
navigate to a tuple, or somehow indicate interest in a tuple.
We will call these primary-key actions, because the tuples
can be identified by their primary-key values. Users initiate
the action via input, and the visualization responds with
visual feedback. For example, users might select a tuple in
a scatter plot by clicking on or mousing over the dot, and
the system might respond by highlighting the dot in yellow.
We extend this slightly to enable primary-key actions to be
invoked programmatically. For example, the Snap system
can also select a tuple in the scatter plot to cause the same
yellow-highlight visual feedback as if the user had clicked
on the dot. Hence, we can model primary-key actions as
unary functions that take a tuple’s primary-key value as
argument: e.g. Viz.Select(<id>). Each visualization
publishes the set of tuple actions it supports to Snap.

Visualizations also have a foreign-key action that is
managed by Snap: the Load action queries the
visualization’s original relation for tuples that are joined
(by a foreign key) to the tuple given as the argument
(primary key) and loads them into the visualization.

In the Snap user interface, users load relations into
visualizations using the Snap Main Menu (Figure 3). It
displays a menu of the tables and queries in the database
and a menu of the available visualization tools.

Coordinating Visualizations
After loading relations into visualizations, users can then
coordinate the visualizations (‘snap them together’). When
coordinating a pair of visualizations, users choose the
actions in each view to coordinate. A Snap coordination
tightly couples the actions between the two visualizations

 Scatter Plot Viz Treemap Viz

1

Select
M

Load

Figure 2: Top: A schema diagram for a database of
Census information for U.S. states and counties (using
Microsoft Access).
Bottom: The data tables are loaded into visualizations
and coordinated according to the join relationship
between them. This example models a drill-down
interface for States to Counties.

on tuples related by the join between the relations. Users
coordinate the visualizations based on the join relationships
between their relations. There are 4 cases:

1. One-to-One: This is a primary-key to primary-key
relationship. Users coordinate a primary-key action in one
view to a primary-key action in the other. Then, when users
invoke the former action on a tuple in the former view, the
system automatically invokes the latter action on the
corresponding tuple in the latter view, and vice versa.

This is often used to relate different perspectives on a single
relation. For example, in Figure 1 different projections of
the States table are displayed in a scatter plot and a map.
Coordinating the select action in the plot to the select action
in the map creates a brushing-and-linking coordination.
When users click on Maryland in either view, it will also be
highlighted in the other view.

2. One-to-Many: This is a primary-key to foreign-key
relationship. Therefore, users can coordinate a primary-key
action in the view on the One side of the relationship with a
foreign-key action on the Many side. (See Figure 2)

This relationship indicates a hierarchical relationship
between the relations. For example, in Figure 1 the States
are displayed in a scatter plot and Counties in a Treemap.
Coordinating the select action in the plot to the Load action
in the Treemap creates a drill-down coordination. Clicking
on Maryland in the plot loads and displays only Maryland’s
counties in the Treemap.

3. Many-to-Many: This relationship is generally
composed of 2 one-to-many relationships. Therefore, users
employ the one-to-many case in the desired direction.

4. No relationship: If the schema has no relationship
between the relations, then there is no coordination between
the views. However, if users desire coordination based on
more complex or indirect relationships, then it is probably
possible to modify the schema with queries to specify the
desired relationships with standard joins. Hence, with
Snap, advanced coordination is simply a data-relationship

representation problem rather than a custom user-interface
programming problem.

Snap coordinations are bi-directional, so that either action
triggers the other. Users can also chain coordinations end-
to-end. For example, users can establish brushing across
three views.

In the Snap user interface, users coordinate a pair of
visualizations by dragging the Snap button from one to the
other (similar to [JBO94] and [DP95]). This displays the
Snap Specification dialog. Users select the primary-key or
foreign-key actions for each visualization to coordinate.
After construction, users can save a set of coordinated
views as a group for later re-use or sharing.

Common Coordinations with Snap
With Snap, users can quickly construct common
coordinations, such as:

• Brushing-and-linking: (Figure 1: outliner, plot, map)
Join relationship: one-to-one
Coordinated actions: select in Viz1 and select in Viz2
Usage: Selecting an item in one view highlights the
corresponding item in another view. Typically used to
identify like items when a set of items is displayed in
different views for different contexts.

• Overview and detail view: (Figure 4)
Join relationship: one-to-one
Coordinated actions: select in Viz1 and scroll in Viz2
Usage: Selecting an item in the overview scrolls (or more

Figure 3: Snap’s Main Menu (left) and Snap Specification
dialog (right).

Figure 4: A textual interface for browsing Census
information about the U.S. states. Using Snap, an
overview is easily added to the scrolling report.

generally navigates) the detail view to the details of that
item. Items are represented visually smaller in the overview
than in the detail view. Allows direct access to details, and
provides context for details.

• Drill-down: (Figure 1, plot and table)
Join relationship: one-to-many
Coordinated actions: select in Viz1 and load in Viz2
Usage: Selecting an item in one view loads related items
into another view. This enables exploring very large-scale
data, by displaying aggregates in one view and the contents
of a selected aggregate in another view. For example, 1
million ‘stars’ may be too much for single plot. Instead,
break it down into 1000 ‘galaxies’, each with 1000 stars.
Then display one plot of galaxies and one of stars with a
drill-down coordination between them.

• Synchronized scrolling:
Join relationship: one-to-one
Coordinated actions: scroll in Viz1 and scroll in Viz2
Usage: Scrolling through a list of tuples in one view also
scrolls to corresponding items in another view.

• Details on demand:
Join relationship: one-to-one
Coordinated actions: select in Viz1 and load in Viz2
Usage: Selecting a tuple in a graphical view loads and
displays additional details of that tuple in an adjacent
textual view. This uses load as a primary-key action.

Snap API
Snap’s model of a visualization is intentionally simple.
Snap is designed to be open and easy for researchers and
developers to make their independent visualizations snap-
able. Therefore, Snap minimizes impact on visualization
implementation. Snap uses a simple API (application
programming interface) to communicate with
visualizations. This is analogous to API’s in modern
window-management systems for utilities such as cut-and-
paste or drag-and-drop. We propose the Snap API as a
similar standard, that can be easily added to a visualization
tool by its developers, enabling users to immediately snap it
with many other visualizations. This enormously increases
the value and usefulness of the tool for little cost.

To be snap-able, a visualization must support this API:
• Load method. When users load a relation into the

visualization, Snap must be able to send the data to the
visualization via file, memory, or ODBC, which ever is
convenient for the tool. A translation routine may be
needed to translate the relational structures to those
used by the tool.

• Methods and events for each primary-key action:
When users invoke actions, the visualization must fire
an event to Snap. Likewise, Snap must be able to
invoke actions in the visualization. The primary key
value of the tuple acted on is passed. The visualization
developer determines what actions it supports. Select
is recommended as a minimum.

Other than these few hooks, visualizations remain
independent software programs, maintaining their own data
structures, etc. For example, Spotfire, a commercial
software package, was integrated using its existing API and
a 10-line VB wrapper to translate the communication calls.

Snap is currently implemented in the Windows platform. It
uses COM for communication in the API and ODBC for
database access. We have used Snap with MS Access and
Oracle databases.

Scenarios
Snap is useful for rapidly constructing visualization
interfaces for many different types of information. As the
following examples illustrate, Snap makes information
visualization capabilities immediately accessible and
applicable for users.

Web-Site Logs
Recently, we have been interested in visualizing data from
web logs [HS99], a database containing information about
users’ visits to a web site. In this scenario, we are
interested in discovering what internet pages are referring
many users, via hyperlinks, to specific pages on our lab’s
web site. A user interface to explore this database can be
quickly constructed with Snap (see Figure 5).

First, a user interface to explore specific pages on our site is
needed. Opening a table of the pages and their URLs into
an outliner displays a hierarchical view of the site. A web-
browser visualization (MS Internet Explorer) can be used
with URL data values to display the actual internet pages.
Snapping the outliner to a web-browser, by coordinating the
outliner’s select action to the browser’s load action, creates
a rapid site browser. Clicking on a page’s node in the
hierarchy displays the page in the browser (top of Figure 5).

Now, visualizations to discover referring pages are added.
A table of hits to our site is aggregated by the referring and
referenced pages and loaded into a scatter plot. There is a
one-to-many relationship between the pages table and the
hits table. The outliner is coordinated to the plot with select
and load actions respectively. The plot displays the
referrers as a histogram, with referrer name on the X axis
and the number of hits referred on the Y axis. Similar to
the outliner, the plot is also coordinated to a web browser to
view the actual referring pages (bottom of Figure 5).

Now, selecting our home page in the outliner displays that
page in the browser and the distribution of referrers to it in
the plot. Selecting a high-ranking referrer in the plot
reveals the Human Factors International page in the other
browser. Exploring reveals other pages that send many
users to our home page, including Ben Shneiderman’s page,
the Department page, and Yahoo’s HCI institutes page.
Selecting our Visible Human project page in the outliner
shows nearly 1000 hits from the National Library of
Medicine page. Selecting to open this page indeed reveals
a prominent link to our page. Naturally, lab members

explored to discover referrer patterns to their personal
pages.

Photo Libraries
For a research project on user interfaces for browsing
personal photo libraries, we have been using Snap to
explore many interface variations. Our lab has accumulated
a database of scanned photos of lab members and activities
spanning 10 years. It includes annotations such as
members’ names, dates, locations, and other information.

In Figure 6, a thumbnail browser shows a collection of a
few hundred photos. The scatter plot displays a time line of
the photos, with date on the X axis and members’ names on
the Y. Vertical stripes of dots represent groups events,
pictures of many members on the same date. The large
stripe in the middle is many photos from the 1992 Open
House. Selecting a photo from winter ’89 displays the full-

size photo from a ski trip, a list of names of members in the
photo, and details of photo attributes.

Other interface variations include locating photos by
members’ names or locations, selecting a person in a photo
to find other pictures of that person, etc.

EMPIRICAL EVALUATION
To determine if Snap’s model and user interface are usable
and beneficial, it is important to empirically evaluate the
two phases of using Snap:
1. Construction: First, can users successfully construct

coordinated exploration interfaces by snapping
visualizations together?

2. Operation: Second, can users then operate the
coordinated interfaces constructed with Snap to explore
information beneficially?

This section presents a summary of these 2 studies. For

Figure 5: This visualization environment for exploring web-site log data was quickly constructed using Snap. The outliner,
Treemap, and web browser at the top form a site browser for the HCIL web site. The scatter plot and browser at the bottom
display pages that refer readers to the site. This example reveals that Human Factors International referred 110 readers to the
HCIL home page that month.

more details, see [Nor00].

Little work has been done to evaluate systems for
coordination. [CS94] and [SSS86] indicate performance
advantages at operation level for the drill-down type of
coordination (e.g. level 1 systems). We are not aware of
any studies on coordination construction (level 3 systems).

Usability of Coordination Construction
The goal of the first study is to determine how difficult it is
for relatively novice users to learn Snap and construct
coordinated interfaces, in terms of success rate and time to
completion. This study reveals cognitive trouble spots in
the construction process and identifies potential Snap user
interface improvements.

Procedure
We worked with 6 subjects on a one-on-one basis. Three of
the subjects were data analysts or statisticians at the U.S.
Bureau of the Census. The other three were programmers.

Subjects were first trained on using Snap-Together

Visualization. At the time of this study, the Snap user
interface did not have capability for users to easily create
projections, join queries, etc. Hence, subjects were also
trained on using Microsoft Access to manipulate the
database, schema and queries.

Testing consisted of 3 exercises. Subjects were asked to
construct coordinated exploration interfaces according to
three provided specifications: two were printed screenshots
(a simple one identical to Figure 4, and a more difficult one
similar to Figure 1), and one a description of the task that
the constructed interface should support. The database
consisted of census data of the U.S. states and counties.

Results
Overall, subjects easily grasped the concept of coordinating
views. All the subjects completed the training in 30-45
minutes, and were able to complete all three exercises.
They accomplished each exercise in 2-15 minutes,
depending on the difficulty. Much of this time was
absorbed by window management (see [KS97] for a review

Figure 6: Exploring a photo library with Snap. The user has displayed a collection of photos in a thumbnail browser to
quickly overview many photos and in a scatter plot to see trends on a time line. These are coordinated to a web browser to
display the full-resolution picture of a photo when selected. Additional text views display names of people in the picture and
other details.

of potential solutions) and Access. Subjects had very little
previous experience with Access and database concepts.

As to the subjects’ general reaction to Snap-Together
Visualization, we were impressed by their level of
excitement. The subjects were quick to learn the concepts
and usage, and were very capable to construct their own
coordinated interfaces. Several stated that they had a
gratifying sense of satisfaction and power in being able to
both (a) so quickly snap powerful exploration environments
together, and (b) with just a single click effect exploration
across several visualizations and see the many parts operate
as a whole. They commented that it made exploration seem
effortless, especially in comparison to standard tools.

To our surprise, the data analysts performed better than the
programmers did. During the training, they were already
trying variations of snaps, exploring the data, and pointing
out various anomalies in the data. After finishing the
exercises, these subjects each stayed for an additional hour
to play. All the Census subjects expressed desire to use
Snap-Together tools in their work. In fact, a collaborative
effort is underway.

An important result was the creativity and variation evident
in the subjects’ solutions to the 3rd exercise. Subjects
designed interfaces that made sense to their perspective on
the data. They used a mixture of visualizations and
coordinations. For example, while one subject used
scatterplots, another subject augmented this design with
lists for state and county names. The subject stated that this
would help to see which state and county was currently
selected in the scatterplots, and allow for accessing states
by name. Another subject who preferred to see the
numerical values used tabular visualizations with sorting.

User Interface
Understanding the basic underlying model of Snap was
critical. However, the Snap user interface apparently did
not reflect this model well because of the disparity between
the schema management (Access), the Snap main menu, and
the Snap Specification dialog. For example, to add a
projection of a table as an overview visualization to an
interface, users had to generate the query in Access, load it
into a visualization using the Snap main menu, and
coordinate it to other views using the Snap Specification
dialog. In addition, users sometimes forgot which
visualizations were currently coordinated. A ‘debug’ mode
to show how coordination propagates between
visualizations would have been helpful.

These problems might be solved by redesigning the Snap
interface around a single direct-manipulation visual
overview that merged the schema diagram with a
visualization-coordination graph diagram. This diagram
could be used for schema management, simple querying
and loading into visualizations, and coordination
specification and ‘debugging’. In addition, the need to
create queries by hand could be eliminated for common

simple situations. For example, for projections users could
simply select the desired attributes and drag them directly
to a visualization. Snap could also generate queries for
foreign-key loads automatically. These enhancements
would likely reduce users’ training and construction time
significantly. We are already working on this.

Usability of Coordination Operation
The goal of the second study is to measure the magnitude of
the benefit of using views coordinated with Snap over the
alternatives: independent views or a single view. Benefit is
measured in terms of user task times and subjective
satisfaction for browsing large information spaces. This
study reveals whether the visual feedback across views is
distracting or disorienting for users.

While there are many possibilities, this study examines an
Overview and Detail View coordination constructed with
Snap. If there is a benefit over the single view, then what is
the important factor causing improved performance? Is it
(a) the information displayed in the overview, or (b) the
coordination between the overview and detail view?

Procedure
18 subjects used 3 different interfaces for browsing Census
state population statistics. They performed 9 different
browsing tasks, ranging from easy to difficult. The 3
interfaces were: (similar to Figure 4)
1. Detail-Only: Scrolling view of all the states’ data.
2. Independent-Views: Adds the overview not coordinated,

to see if overview or coordination is more important.
3. Snapped-Views: Adds coordination using Snap. This is

the same user interface from the 1st study, 1st exercise.

Results
On average, Snapped-Views achieves an 80% speedup over
Detail-Only for easy tasks and 30-50% for difficult tasks,
both significant. The Independent-Views interface results
in a nearly binary pattern. For easy tasks, where only
information in the overview is needed to accomplish the
task, Independent-Views performs on par with Snapped-
Views. Whereas, in difficult tasks, where subjects needed
to access the details, Independent-Views is as bad as Detail-
Only. Hence, when access to details is important,
coordination is critical.

In fact, Snapped-View’s performance times for lookup
tasks are in the same extremely fast range as overview-only
tasks. Whereas, Independent-View’s times drop to Detail-
Only level performance. When looking up details, perhaps
the most common task, coordination especially excels.

In subjective satisfaction, Snapped-Views gains rankings
twice as high (significant) as Detail-Only and Independent-
Views. Independent-Views average 20% higher than
Detail-Only. Users reported that they were not distracted
by the coordination, but in fact expected that functionality.
We believe these results indicate that the Snap capability is
indeed beneficial, wanted, and sorely needed.

Combined Analysis
Together, these studies indicate the breakpoint at which
time savings during data exploration surpass interface
construction time. The 2nd study used the same interface as
was constructed in the 1st study. The time cost of
constructing the interface was 2-5 minutes, while it saved
about 0.5-1.5 minutes over the Detail-Only interface for
more difficult tasks. Hence, after just a few tasks, users are
already reaping savings with snapping their own interface.
Of course, it is difficult to factor in learning time and
effects of sharing snapped interfaces. Nevertheless, this
simple analysis is revealing. Customized information
visualization is within the grasp of novice users.

CONCLUSIONS and FUTURE WORK
Snap-Together Visualization introduces four novel
contributions:

(a) Conceptual model: a relational model for visualization
coordination, based on linking actions across joins.

(b) User interface: a user interface that enables end users
to construct custom coordinated visualization
environments, based on the conceptual model, allowing
flexibility in data, views, and coordinations.

(c) Architecture: an open architecture based on a simple
API that enables visualization developers to easily
snap-enable their visualizations.

(d) Evaluation: data savvy users were very capable at
constructing coordinated visualization environments of
their own using the model and interface. Users of a
constructed interface obtained 30-80% performance
speedup for many browsing tasks.

Snap has already proven useful in a variety of applications,
including: West Group case law, Census Bureau and GIS
data analysis, Maryland State Highway Administration
accident data, research projects on personal photo libraries,
web logs, mailing lists and technical-report databases.

Continued research is needed to explore alternate user
interfaces for coordination overviews, strategies for
aggregation and history keeping, multi-way coordination,
window management, coordination guidelines, and more.

ACKNOWLEDGMENTS
This research was partially supported by funding from West
Group and the U.S. Bureau of the Census.

REFERENCES
[AW95] Ahlberg, C., Wistrand, E., “IVEE: An Informatin

Visualization and Exploration Environment”, Proc.
IEEE Information Visualization ’95, pp. 66-73, (1995).

[BC87] Becker, R., Cleveland, W., “Brushing scatter-
plots”, Technometrics, 29(2), pp. 127-142, (1987).

[CBR97] Chi, E. H., Barry, P., Riedl, J., Konstan, J., “A
spreadsheet approach to information visualization”,
Proc. IEEE Information Visualization ‘97, pp. 17-24,
(1997).

[CS94] Chimera, R., Shneiderman B., “An exploratory
evaluation of three interfaces for browsing large
hierarchical tables of contents”, ACM Transactions on
Information Systems, 12(4), pp. 383-406, (Oct. 94).

[DP95] Dumas, J., Parsons, P., “Discovering the way
programmers think about new programming
environments”, Communications of the ACM, 38(6), pp.
45-56, (June 1995).

[EW95] Eick, S., Wills, G., “High Interaction Graphics”,
European Journal of Operations Research, #81, pp.
445-459, (1995).

[Hae88] Haeberli, P., “ConMan: a visual programming
language for interactive graphics”, Proc. ACM
SigGraph ’88, pp. 103-111, (1988).

[HS99] Hochheiser, H., Shneiderman, B.,
“Understanding patterns of user visits to web sites:
interactive starfield visualizations of WWW log data”,
Proceedings ASIS ’99 Annual Conference, (1999).

[ISB95] Isakowitz, T., Stohr, E., Balasubramanian, P.,
“RMM: a methodology for structured hypermedia
design”, Communications of the ACM, 38(8), pp. 34-44,
(August 1995).

[JBO94] Jacobson, A., Berkin, A., Orton, M.,
“LinkWinds: interactive scientific data analysis and
visualization”, Communications of the ACM, 37(4), pp.
43-52, (April 1994).

[KS97] Kandogan, E., Shneiderman, B., “Elastic
Windows: evaluation of multi-window operations”,
Proc. ACM CHI’97, pp. 250-257, (March 1997).

[LRB97] Livny, M., Ramakrishnan, R., Beyer, K., Chen,
G., Donjerkovic, D., Lawande, S., Myllymaki, J.,
Wenger, K., “DEVise: integrated querying and visual
exploration of large datasets”, Proc. ACM SIGMOD’97,
pp. 301-312, (1997).

[Nor00] North, C., “Snap-Together Visualization”,
University of Maryland, Computer Science Dept.
Doctoral Dissertation, (Spring 2000, forthcoming).

[RLS96] Roth, S., Lucas, P., Senn, J., Gomberg, C., Burks,
M., Stroffolino, P., Kolojejchick, J., Dunmire, C.,
“Visage: a user interface environment for exploring
information”, Proc. Information Visualization, IEEE,
pp. 3-12, (October 1996).

[Shn92] Shneiderman, B. “Tree visualization with
treemaps: a 2-d space-filling approach”, ACM
Transactions on Graphics, 11(1), pp. 92-99, (Jan. 1992).

[SSS86] Shneiderman, B., Shafer, P., Simon, R., Weldon,
L., “Display strategies for program browsing: concepts
and an experiment”, IEEE Software, 3(3), pp. 7-15,
(March 1986).

[Vel88] Velleman, P., The Datadesk Handbook, Odesta
Corporation, (1988).

